

[image:]

UNIT – I
The Source of Open Source: What is Open source, Who creates open source, Who uses Open source, Where do I get open source software, When and how I use open source, Open Source History, Open Source Licenses.

Introduction to Open Sources
Open Source is a certification mark owned by the Open Source Initiative
(OSI). It refers to any program whose source code is made available for use or
modification as users or other developers. Open source software (OSS) refers to
software that is developed, tested, or improved through public collaboration and
distributed with the idea that the must be shared with others, ensuring an open
future collaboration. ((OSS) is computer software with its source code made available and licensed with a license in which the copyright holder provides the rights to study change and distribute the software to anyone and for any purpose. Open-source software is very often developed in a public, collaborative manner.)
Definition: Open-source software is computer software whose source code is available under a license (or arrangement such as the public domain) that permits users to study, change, and improve the software, and to redistribute it in modified or modified form. Based on two principles we can call particular software asopensourcesoftware
Principle1: The software source code should be available with license and that license contain permissions they are
 1) The user is able to study the code
2) The user able to change the code
3) The may able to improve the code
Principle2: The license should not have certain restrictions in terms of
1) Technology
2) Field
 3)Hardware
Technology: Here Technology means operating system, in the computer science there are many different operating systems available, here the software must support all kinds of operating systems such as windows, UNIX, Linux and Macos.
Field: Now a day’s computer enter into many fields such as agriculture, medical and Biotechnology fields. Here the software must supports or works in all fields
Hardware: In this context hardware means devices such as Nokia, Samsung and celkon. Here the software should work on or supports all kinds of devices.
What is the difference between free software and Open source Software?
Free software, or Freeware, is usually freely distributed software that depend it author’s request, you can redistribute without modifying it.
Most open source software is covered by the GPL (General Public License) which means you can modify it, and redistribute your modifications to it so long as you don’t try to pass it off as the original work.
What's the difference between open source software and other types of software?
Some software has source code that cannot be modified by anyone but the person, team, or organization who created it and maintains exclusive control over it. This kind of software is frequently called "proprietary software" or "closed source" software, because its source code is the property of its original authors, who are the only ones legally allowed to copy or modify it.
Open source software is different. Its authors make its source code available to others who would like to view that code, copy it, learn from it, alter it, or share it.

Advantages of Open Source
Open source software can have major impact on your entire organization. There are several advantages of using open source software. The following are a list of the advantages of opting for open source software:
1. Lesser Hardware Costs
 Since Linux and open source solutions are easily portable and compressed, it takes lesser hardware power carry out the same tasks when compared to the hardware power it takes on servers such as Solaris, windows or workstations. With these less hardware power advantage, you can even use cheaper or older hardware and still get the desired results.
2. High quality software
Open source software is mostly high quality software. When you use the open source software, the source code is available. Most open source software is well-designed. Open source software can also be efficiently used in coding. These reasons make open source software an ideal choice for organizations.
3. No Vendor Lock-IN
 IT managers in organizations face different problems when dealing with vendor lock-ins. Lock of portability, expensive license fees and inability to customized software are some of the other disadvantages. Using open source software gives you more freedom and you can effectively address all these disadvantages.
4. Integrated Management
By using open source software, you can benefit from integrated management. Open source software use technologies. Such as, common information model (CIM) and web based enterprise management (WBEM). These high technologies enable you to integrate and combine server, application, service and workstation management. This integration would result in efficient administration.
5. Simple license management
When you use OSS there is no problem about license. OSS enables you to install it several times and also use it from any location. You will be free from monitoring, tracking or counting license compliance.
6.Lower software cost
Using OSS it helps to minimize your expenses. You can save on licensing fees and maintenance fees. The only expenses are the expenditure for documentation, media and support.
7. Abundant support
 OSS is mostly freely available and can be easily accessed through online communities. These are also many software companies that provide free online help and also varied levels of paid support. Most organizations that create OSS solution also provide maintenance and support.
8. Scaling and consolidating
LINUX and OSS can be easily scaled with varied options for clustering, load balancing and open source applications such email and database. You can enable your organization to either scale up and achieve higher growth or consolidate and achieve more with less.

Disadvantages of using Open Source
 There’s a flip side to everything, and in the case of Open Source software it all boils down to the old saying of “there’s no such thing as a free lunch”. Most of the disadvantages only apply if you’re not somewhat code savvy and willing to get your hands dirty:
1. Mostly used commercial applications
2. Projects can die
3. Support issues.
4. Because there is no requirement to create a commercial product that will sell and generate money, open source software can tend to evolve more in line with developers’ wishes than the needs of the end user.
5. For the same reason, they can be less “user-friendly” and not as easy to use because less attention is paid to developing the user interface.
6. There may also be less support available for when things go wrong – open source software tends to rely on its community of users to respond to and fix problems.
7. Although the open source software itself is mostly free, there may still be some indirect costs involved, such as paying for external support.
8. Although having an open system means that there are many people identifying bugs and fixing them, it also means that malicious users can potentially view it and exploit any vulnerabilities.

Applications of Open Sources
Some of the application listed below:
1. Accounting
 2. Content Management Systems
 3. CRM (Customer Relationship Management)
4. Desktop Environments/ Shell replacements
 5. Email Clients
6. Encoding, Conversion & Ripping Tools
7. ERP
8. File sharing & FTP
 9. Graphics-Design & Modeling Tools
 10. Messengers & Communication Clients
11. Project Management
12. Reporting Tools
13. RSS
14.WebBrowsers
List of commercial open source applications with tools
	S.NO
	Application
	Open Source Tools

	1
	Cloud management
	Abiquo

	2
	Ecommerce
	Avactis

	3
	Reporting Tools
	Actuate

	4
	Enterprise Content Management, web Content Management
	Alfresco

	5
	Data Backup/Recovery
	Bacula

	6
	ERP and CRM
	Compiere

	7
	Office productivity
	Lotus Symphony

	8
	RDBMS
	Ingres Database

	9
	Software Development Tools for C , C++
	Sun Studio

	10
	Server and Client LINUX distribution
	Ubuntu

1.1 What is Open Source
[image:]
[image:]
[image:][image:][image:]
[image:]
[image:]
[image:]
[image:]
[image:]

2. Who creates open source

[image:]
[image:]
[image:]
[image:]
[image:][image:]

3. Who use open source
[image:]
[image:]
[image:]

[image:]
[image:]
[image:]
[image:]

4. Where do I get open source software?
Open source software is available from many different places. Individual open source products might have their own web site to make the product available. There are several open source portals, which act as repositories of open source software. Many open source products are available at these portals, making them convenient for locating products via the portal’s search capability. Finally a few open source products are available for sale, typically made available by companies that have bundled the basic open source product along with some useful utilities and possibly an improved installation mechanism.
* The most convenient place to get a product is from one of the open source portals.
		The eight most successful open source products ever

1. Linux
[image: http://farm3.static.flickr.com/2429/3576185242_c00d5d7524_o.jpg]Linux, hand in hand with GNU software as GNU/Linux, has come a long way since Linus Torvalds announced that he was creating an OS kernel based on Minix back in 1991. These days, a majority of web servers run Linux, and with Ubuntu (see below) it is also (finally) starting to make inroads into the desktop market, and maybe it will soon also be strong player in the mobile market with Android (which uses the Linux kernel).
2. Ubuntu
[image: http://farm4.static.flickr.com/3594/3576185198_2c6de1a0cd_o.jpg] Launched in 2004, Ubuntu is by far the most popular Linux distribution today, especially on the desktop side. Considering the massive success of Ubuntu in recent years, we thought it was worth its own mention here even though we already mentioned Linux.
3. BSD (Berkeley Software Distribution (various UNIX flavors))
[image: http://farm4.static.flickr.com/3627/3576185278_17331d4814_o.jpg]FreeBSD, OpenBSD and NetBSD have been well-respected server OS alternatives for a long time. Derived from Berkeley Unix in the 1990s, we chose to put them into one group here. As an interesting aside, the core for Apple’s Mac OS X is derived from FreeBSD.

4. MySQL
[image: http://farm4.static.flickr.com/3585/3575378753_3657a83c9b_o.jpg]MySQL the most widely used database server in the world, used by a huge amount of websites and services (examples include Wikipedia, Facebook and, more modestly, our very own Pingdom.com…). It’s the M in the hugely popular LAMP stack (Linux, Apache, MySQL, PHP).

5. Apache
[image: http://farm4.static.flickr.com/3207/3575378487_9470cc9f8c_o.jpg]: The Apache HTTP Server has been the most popular web server software in the world since 1996, which is also the year it got started. Apache still has a strong lead, outclassing second runner up IIS in terms of number of deployed websites(according to Netcraft, Apache is currently used by 46% of all websites, while IIS is used by 29%). In 2009 it passed a huge milestone, becoming the first web server to be used by more than 100 million websites.

6.Firefox
[image: http://farm4.static.flickr.com/3297/3576185214_18f4b3e781_o.jpg] Mozilla’s crowning achievement so far, the Firefox web browser has become a mega success. Firefox 1.0 was launched in 2004 and the browser has since then taken away a huge chunk of the browser market from the previously dominant Internet Explorer, and is arguably the reason that Microsoft started to put more effort into updating IE with new versions. Although Firefox is still number two overall, it has become the dominant browser among the more “techie” crowd (this blog, for example, gets 59% of its visits from Firefox and just 18% from IE).

7.WordPress
[image: http://farm3.static.flickr.com/2465/3576185028_6c02df8eb9_o.jpg] Since its launch in 2004 as a fork of the b2 blog software, WordPress has become a dominant and hugely popular blog platform. In a survey we made back in January 27% of the top 100 blogs ran on WordPress. If you also counted WordPress.com, Automattic’s hosted WordPress service, that number rose to 32%, more than any other blog software. Since then there have also been some changes, such as the nine Wired blogs in the top 100 switching from Typepad to WordPress, so that percentage is likely significantly higher now (all else unchanged, it would be 41%).

8.BIND
[image: http://farm3.static.flickr.com/2438/3576185170_e10d544c10_o.jpg] (The Berkeley Internet Name Domain Server) is the most widely used DNS server software on the Internet. The first version of BIND goes all the way back to the early 1980s and has been the main DNS server on UNIX systems ever since. It can justly be called the world’s de facto standard DNS server.
Top Portal Software Products
eXo Platform
Open-source social-collaboration software designed for enterprises - based on standards, extensible and has an amazing design.
Bitrix24
High-end solution designed for effective collaboration, communication, social networking, and workflow and knowledge management.
Aura Portal
BPM software for the creation, modeling and execution of Business Process Workflows without the need for IT programming.
Ready Portal
A lightweight high performance portal engine focused on ease of implementation and content publication
Clinked
Online client portal, project management, teamwork and collaboration platform that allows people to interact wherever they are.
Suite Dash
Fully branded: Client Portal, Project Management, Invoicing, File Sharing, CRM, IM, Messaging & more
Directors Desk
Secure web-based portal to compile board books, store documents and distribute them; as well as conduct votes, surveys and discussions.
Online Appointment Manager
Online appointment scheduling software for medical, dental, accounting, home repair and other professional practices.
Billing System
A web-enabled automated billing system to manage billing, payments and customer information. No start-up costs.

[For more referhttp://www.capterra.com/portal-software]}]

1.Individual Open Source Product Web Sites
Some very well established open source products have their own web sites that act as the main distribution mechanism for the software. The web sites act as gathering points for developers and the user community to interact.
	They often have forums for discussions and questions among the community. News about the product will be available as well. These web sites are the electronic equipment of an old-fashioned country store in which transactions, friendships, information swapping and gossip all take place. The sites themselves can easily found via a Google Search on the product name.
* Some open source products have their own web site for distribution.

2. Open source Portals
Open source portals offer a centralized location for open source products. The portals host open source projects, offering a number of services that make starting and maintaining an open source project much easier.
Some of the Open source portals are listed below
1. Apache HTTP Server [http:// httpd.apache.org/] (Web Server)
2. Blender [http://www.blender.org] (3D graphics and animation package)
3. GNU Compiler Collection [http://www.gnu.org/software/gcc/gcc.html] (GCC, a suite of compilation tools for C, C++, etc)
4. KDE [http://www.kde.org/] (Linux desktop environment)
5. Moodle [http://www.moodle.org/] (virtual learning system)
6. Firefox [http://www.mozilla.com/en-US/firefox/] (web browser based on Mozilla)
7. MySQL [http://www.mysql.com/] (database)
8. OpenOffice.org [http://www.openoffice.org/] (office suite, including word processor, spreadsheet, and presentation software)
9. PHP [http://www.php.net/] (web development)
10. Perl [http://www.perl.org/] (programming/scripting language)
11. PostgreSQL [http://www.postgresql.org/] (database)
12. Python [http://www.python.org/] (programming/scripting language)
13. Samba [http://www.samba.org/] (file and print server)
14.Zope [http://www.zope.org/] (web application server)

* For more refer the URL http://oss-watch.ac.uk/resources/softwareexamples
https://www.neteasy.us/technology/open-source/examples-of-open-source-software

3. Commercial Distributions
 A few source products are available for sale. The commercial product is usually offered along with other product-oriented services, like technical support or training. Even in the companies that offer a commercial version of an open source product, however, usually the product is available at zero prices as well. The version sold is merely made available in a more convenient format (Ex: on a CD) or as part of a larger product offering that bundles services along with the software.
*Some open source products are available on commercial distributions
4. The challenge of Anonymous Distribution
One of the most interesting , yet frustrating, aspects of open source is that not only is it available at zero price, but it is available anonymously. You don’t have to identify yourself to download the product: no forms to fill in, no credit card information (unless the product is purchased), no nothing.
*Open source products are available for anonymous download.

[bookmark: _GoBack]5. When and how I use open source
These are intertwined questions. The right time to use open source is when both you and the product are ready. The practices you (and the IT industry) have used over the past 40 years won’t work with open source products. A whole new method of selecting and evaluating products is required to succeed with open source.
*Using Open source requires new working practices.

6. History of Open Source

1960's and 1970's: software was largely provided by computer companies and freely shared.
● 1969: UNIX developed at AT&T Bell Labs.
● 1969: ARPANET created.
● 1970's: AT&T provides CS departments with UNIX source code and encouraged modifications (could not sell due to 1974 antitrust findings).
● 1975: Microsoft founded, first product is BASIC for MITS Altair (an early microcomputer)
· 1976: Bill Gates accuses hobbyists of stealing his software, thus preventing “good software from being written” (of course he paid nothing for BASIC).
● 1976: US amends copyright law, no longer requires explicit registration, etc.
● 1980: US copyright law amended to cover software.
● 1980: Microsoft launches UNIX-clone XENIX for 16-bit microprocessors.
● 1981: Bill Gates makes deal to buy DOS for $50k (without mentioning pending IBM PC deal).
● 1981: Launch of the IBM PC with MS-DOS.
● 1980's: rise of proprietary software, companies quit sharing code and allowing modifications, and start
charging lots of money for software.
● 1980's: IBM is #1 computer company with DEC #2 (DEC strongly associated with ARPANET but DEC anti-UNIX despite UNIX being developed on PDPs).
● 1982: AT&T divestiture (breakup) allows UNIX to be sold and the “UNIX wars” begin.
● 1982: Sun Microsystems born: UNIX workstations.
● 1982: Larry Wall creates patch utility for UNIX, enables distributed, collaborative development.
● 1983: DARPA-funded BSD UNIX TCP/IP released.
● Early 1980s: ARPANET and UNIX hacker communities begin to converge on UNIX and C.
● 1984: MIT hacker Richard Stallman starts GNU project to promote “free software.”
● 1984: X Window project begun at MIT to develop GUI for UNIX, supported by most UNIX vendors.
● 1985: POSIX starts to standardize UNIX.
● Mid 1980's: DEC Vaxes running UNIX begin to take over ARPANET/NSFNET infrastructure duties.
● 1985: NSFNET created (ARPANET successor, and start of the civilian Internet).
● 1985: Intel releases i386 chip, first 8086 CPU with flat address space that could support UNIX well.
● 1987: Larry Wall releases PERL, FOSS scripting language, for UNIX.
● 1987: first version of GNU C compiler released, and GNU development toolset largely complete.
● 1990: Berkely begins effort to remove all proprietary AT&T code from BSD UNIX.
● 1991: Finnish CS grad student Linus Torvalds announces Linux project on USENET, with goal of
producing a UNIX-like OS for Pcs (like MINIX), due to high cost of commercial UNIXes like Sun Solaris.
● 1992: AT&T sues Berkely over BSD UNIX, largely halting UNIX development at Berkely.
● 1994: AT&T/Berkely lawsuit settlement allows BSD UNIX to be released, free of AT&T code
● Mid 1990's: liberal BSD license allows companies (including Microsoft) to use BSD code in their
products, leading to Berkely sockets becoming the de facto network programming API.
● Mid 1990's: Linux with GNU tools becomes the primary UNIX-like OS on PCs.
● 1995: Red Hat Software is founded, one of the first commercial Linux distributions.
● 1996: KDE desktop project started, but relied on non-free Trolltech Qt toolkit.
● 1997: FOSS projects GTK toolkit and GNOME desktop are started over concerns about Qt.
● 1997: Eric Raymond publishes The Cathedral and the Bazaar, arguing that open source development
models produce better code, which he summarized with what he termed “Linus Law”: “with enough eyes, all bugs are shallow.”
● 1998: Trolltech re-licenses Qt under “free” license.
● 1998: Netscape decides to open source its primary product, Netscape Navigator browser.
● 2000's: Linux is increasingly widely used in corporate environments, particularly for servers.
● 2000's: Linux development is supported by numerous corporations that view it as commoditizing operating systems, reducing their reliance on Microsoft and eliminating the “Microsoft tax.”
● 2000's: open source software projects involving Internet-based collaborative programming become common, and commoditize many types of software.
● 2000's: virtually all supercomputers run Linux.
● 2003: SCO sues IBM over claimed “UNIX IP” illegally transferred to Linux.
● 2007: SCO loses in court against Novell over ownership of UNIX IP, effectively ending IBM suit (plus repeatedly fails to prove UNIX is in Linux).
● 2007: Sun finally re-licenses Java under free license (but see below).
● 2007: Google releases Android OS based on Linux.
● 2010: Oracle sues Google over Java-related technology patents in Android!
● 2011: Android becomes the most widely sold OS on smart phones.
● 2011: Barnes & Noble makes Microsoft Android patent claims public (showing them to be trivial and
possibly invalid patents), and initiates claims of anti-competitive behavior against Microsoft.

7. Open Source Licenses

1. Proprietary Software License:
· Fairly standard terms
· Source code availability
· Source code not provided - trying to figure out inner workings of software through reverse engineering or decompiling of operating mode is forbidden; OR
· Source code provided - may or may not include permission to create modifications and enhancements
Proprietary Software License terms – Licensees:
· Restrictions on dissemination. Licensee and users strictly defined. Licensee has no right to share with those not defined as licensee users in license;
· Licensor indemnifies licensees against third party infringement claims;
· Often, have to sign a new license each time new licensee obtains the code.
Proprietary Software License terms – Warranty and Support:
· Warranties provided:
· Defects in media and existence of viruses, Trojan Horses, backdoors, etc;
· Can negotiate for warranties re: meet specifications in product documentation
· Maintenance and support terms included (although may be in separate document).
2. Open Source Software License – Licensees:
· Original software owner or developer chooses to limit the rights that he asserts over licensees
· Licensees, subject to license terms, can:
· make and distribute copies of software;
· build upon software to create modifications or other works.
Open Source Software Licenses - Source Code:
· Source code to original product always provided;
· Licensee can modify or enhance source code (create “derivative works”) or include source code with other license types (create “larger works”);
· Licensee may be required to share modifications with the world (in source and/or binary form), but not necessarily;
· Licensee may be prohibited from charging royalties for derivative and larger works, but not necessarily.
Open Source Software License – Warranties and Support:
· Generally, software provided “AS-IS” with no warranties, warranties excluded;
· No indemnification;
· No maintenance or support.
Popular Open Source Licenses
The following OSI (Open Source Initiative)-approved licenses are popular, widely used, or have strong communities:
Apache License 2.0
BSD 3-Clause "New" or "Revised" license
BSD 2-Clause "Simplified" or "FreeBSD" license
GNU General Public License (GPL)
GNU Library or "Lesser" General Public License (LGPL)
MIT license
Mozilla Public License 2.0
Common Development and Distribution License
Eclipse Public License
[For More Visits https://opensource.org/licenses/alphabetical]
NBKRIST PREPARED BY: BSR III B.TECH CSE-A II SEM	Page 21

image2.png
What Is Open Source?

‘When most people hear the term open source, their initial reaction is,
“What is open source? What does it mean?” Simply put, open
source is software that has the following characteristics:

Source Code Availability

Open source is software that has source code available to its users. Open source

It can be downloaded at will and used or modified as desired, as e Dol
long as its license requirements are observed. This differs signifi- Sodeisavailable to
cantly from commercial, or proprietary, software, which is distrib- all users.

uted only in binary format to ensure that its intellectual property

image3.png
Open source
products are
usually available
in binary form as.
well,

Open source
licenses impose far
fewer restrictions

remains privately held by the software creators. Commercial soft-
‘ware is delivered in frozen form: It must be used as delivered.

Open source products are usually also available in binary form so
that they can be used on common operating systems without need-
ing to be compiled first. Of course, not every operating system will
have a binary available, but the source code makes it possible for
the product to be compiled for any operating system that does not
have a binary version available.

Open source software licenses are far less restrictive in terms of how
the software can be used. This does not mean that there are no con-
ditions imposed by open source licenses. Open source usually
allows an organization to use the software in any way it desires, but
often requires that any changes made in the source code be shared
with the user community and given to any customers of the organi-
zation that makes the change.

image4.png
Open source is
usually available
without charge.

Open source is
different from
freeware.

Zero-Price Software

Open source software is distributed at no cost (this is mostly true;
see Chapter 2, “Open Source Business Models,” for a discussion of
open source products available for purchase). This makes sense
because it reflects the reality of source code availability. There is no
way to control distribution of a software product available in source
form. If any attempt were made to limit the product’s use by, for
example, locking the executable onto a single processor, the source
could be modified to take out that portion of the code. Free source
implies zero-price software.

There is no charge for the source code either. In this way, open
source differs significantly from freeware, a type of software open
source is often confused with. Freeware is software distributed
without a fee, but without source code access. Freeware creators
tightly restrict the intellectual property rights to the software and

image5.png
offer the software on a “take it as it is” basis, in contrast to open
source, which carries far less restrictive licensing terms and allows
users to modify the product if they so desire.

Freeware s often distributed on a “time-bombed” basis, meaning it
is free for use for a certain period of time. When that period is up,
the software stops working. If the user wants to continue using the
product, a licensing fee is necessary to defuse the “time-bomb”
restriction.

‘The fact that open source software is zero price offers tremendous
benefits to users:

image6.png
The common dilemma of wanting more installations

than they can afford is avoided. Use of additional copies
often increases the benefits of the software to the
organization.

‘The availability of zero-price software encourages innovation.
Expensive software forces IT organizations to purchase
software only for proven applications. Lower costs allow
organi
even new lines of business. This allows an organization to take
greater advantage of IT in running their business.

Zero-price software enables IT organizations to stretch their
budgets farther and purchase software that they might not
have been otherwise able to afford. The dollars saved by using
free software allows funding for additional applications that
might not have otherwise made the budgetary cut.

Zero-price software reduces overall IT costs, allowing an
organization to make greater investments in other aspects of
its business. Free software reduces the number of capital
expenditure trade-offs that companies must make.

tions to experiment and develop new applications or

image7.png
FREE SOFTWARE AND ZERO-PRICE SOFTWARE

Readers who wonder why the unusual “zero price” term s used instead
of “free” should be aware that some participants in the open source com-
‘munity have a very different meaning for the term “Free Software.” The
adherents of Free Software believe that computer software should be
‘widely available with no restrictions placed on its use, study, copy, modi-
fication, or redistribution.

Most participants in the open source community do not share these
beliefs, but instead feel that intellectual property should be made avail-
able according to the motivation of the creator(s). Much more informa-
tion about Free Software can be found at the Free Software Foundation'’s
‘Wb site (wwwiforg).

It might seem a bit confusing to use the term zero price to refer to the
cost of open source software, but this altemative seems preferable t0 the
potential confusion of using the term free. The term Free Software car-
ties with it much more implication than zero price, which should be kept
inmind. In this text; zero price refers explicitly to the fact that most open
source products are available at no charge.

image8.png
Software licenses
protect the
intellectual
property of the
creator(s).

Open source
significantly
different from
commercial
software licenses.

Open Source: A Different Licensing Model
All software licenses reflect the rights of the creator to control how
the software is distributed. Software is a copyrighted entity that
embodies intellectual property, and, as such, enjoys the legal pro-
tection of copyright law. Although copyright law is often used to
restrict use of a product, the law can be used to enable wide disti-
bution as well. Every piece of software is distributed under some
kind of license, which controls the manner in which the product
can be used.

Open source licenses differ significantly from commercial software
licenses. Commercial licenses restrict the use of the software as
much as possible, to enhance the possibility of selling many
licenses. In contrast, open source licenses are written with the aim
of encouraging wide use, with very few restrictions placed on the
use of the software.

image9.png
One way of viewing the differences in licensing practices between
commercial and open source is that commercial software licenses
are written to allow the software creators to harvest the value that
users receive from the product. By contrast, open source licenses
are written to allow software users to harvest the value from the
product. As noted earlier, users are allowed to modify the source
code if they desire to increase the value they receive from the soft-
ware. Other benefits of open source licensing include the following:

image10.png
« Users are not restricted as to which or on how many machines
they can install software. Commercial licenses typically
control very tightly on how many machines software can be
used. Being able to install as many copies as desired is a great
benefit to users. As application use grows, it is easy 10 expand
the number of copies installed for load-balancing purposes.
Furthermore, organizations can install additional copies of
open source software for training, testing, demonstration, and
integration purposes. The flexible licensing terms encourage
organizations to use software in ways that offer the greatest
benefit to them. Strict licensing terms often restrict users from
using software in ways that offer them the greatest possible
benefit.

« There are no restrictions on access to later versions of the
software. Commercial software licenses often require large
“maintenance” payments to enable user organizations to
access patches, maintenance releases, and upgrade versions of
the software. Open source software imposes no such
restrictions.

* The user communities for open source products are usually
much larger than for commercial products. Because the
products are available at zero price, many more organizations
use the products. Large user communities offer many benefits
10 the developers and users of the software.

image11.png
“Free speech, not
free be
embodies the

beliefs of open

“Free speech, not
free beer”
emphasizes the
rights that
accompany open
source.

Not all users are
focused on the
free speech part of
“free speech, not
free beer.”

Open Source: Free Speech, Not Free Beer
Open source devotees often describe the importance of its licensing
with the phrase “free speech, not free beer.” The point of this
phrase s that, although open source software is usually available at
zero price, the critical aspect about it is that open source offers real
freedom for software creators and users. Specifically, the “free
speech” part of the epigram refers to the liberty that the users of
open source have to use, modiy, and distribute the software. This
liberty is tied to the licensing conditions that make source code
available to software users.

Source availability means that the uses someone can make of soft-
ware are nearly unlimited. It can be copied. It can be modified for
one’s own purposes. The modified version can be distributed as
well, if one chooses to do so. So, “free speech, not free beer”
emphasizes the rights that accompany open source licenses and
‘points out that these rights are not the same thing as zero-price
software.

“Free speech, not free beer* might overstate the appeal of free
speech and understate the appeal of zero-price software to most
‘open source users, just as New Hampshire’s motto “Live Free or
Die” might be only a small part of the residents’ enjoyment of the
state—the larger part being the low taxes they pay. However, open
source licensing terms make possible the free availability of prod-
ucts as well as underlying the other benefits of open source soft-
ware. The topic of Free Software is addressed in the “Free Software
and Zero-Price Software” sidebar as well as in the licensing section
of Chapter 3, “Open Source Risks.”

image12.png
‘Why Do Developers Work on Open Source?
BCG found that open source developers are motivated by intellec-
tal curiosity and a desire to improve their skills. Many of them con-
sider programming to have an aesthetic appeal, like poetry or music.
For these developers, working on open source is far from a burden;
itis a chance to do something they find personally fulfilling. In fact,
a majority of them agreed that “when I program, I lose track of
time" and that “with one more hour i the day, I would spend it
programming.” A large proportion of the respondents also felt a
sense of personal accomplishment by working on open source.

‘With respect to the issue of risk being posed by the developers of a
project abandoning it, a significant percentage believe that one of
the requirements of working on open source is finding someone to
take on the project if a developer leaves it. Developers begin con-
tributing to an open source product out of a sense of interest and
typically develop a personal stake in their work. For that reason,
they are unlikely to abandon a product without seeing that some-
one else s ready to take over their role. Stil
one or more members of the development team might walk away
from a product, leaving users exposed.

there is some risk that

Open source
developers
consider

programming a
mode of self-

Open source
developers
consider
continuity of thy
project very
important.

image13.png
What Are Open Source Developers Like?
To a large degree, open source developers reflect a trend that has
been noted in many other professions: stronger identification with
peer professionals than with organizations. An overwhelming
majority—83 percent—agreed strongly or agreed somewhat with
the statement, “Hackers are a primary community with which [
identify.” It should be noted that, in this context, hackers refers to
very technically oriented individuals and not to people with mali-
cious motivations.

Open source
developers
identify most
strongly with
their profession.

image14.png
‘The geographic
distribution of
open source
developers is
different from
open source users,

‘The survey respondents were mostly between 20 and 30 years of
age and 98 percent were male. They averaged 11 years of profes-
sional IT experience.

In terms of geographic location, North America is home to approxi-
mately 46 percent of open source developers, Europe accounts for
about 42 percent of developers, and the remaining 12 percent are
located in other areas of the world.

Interestingly, this distribution of developers does not match the dis-
tribution of open source users. About 24 percent of all downloads
from SourceForge are from Internet domains located in the United
States, with the remainder going to international domains. In terms.
of individual countries, page views (a proxy for downloads) identify
the three heaviest user nations of SourceForge other than the
United States as Germany, Canada, and the United Kingdom.

image15.png
How Do Open Source
Developers Support Themselves?

This is the question implied in the second question listed at the start

of this section: “Why would anyone work on something for free?”

Two surprising results came out of the BCG survey:

* Afull 30 percent of those surveyed participate in open source
development as part of their employment. These developers
‘work in organizations that use open source products and they
participate in the project to make the product work better for
their employer’s needs.

« Well over 50 percent of those surveyed are professionally
employed in technology organizations. About 20 percent of
those surveyed are students, with 7 percent being academics,
and 15 percent identified as “other.”

image16.png
Therefore, most participants in open source development already
work on technology. Their involvement in an open source project
usually is in addition to their “real” job, motivated by skill develop-
ment or the opportunity to work on an intellectually stimulating
project. By no means are the participants only students or the

unemployed.
Although the majority of open source developers already have full- ~ Open source

time technology jobs, they devote a significant amount of time to :‘F‘“*;":’c"‘“":“l‘:;::::
their open source efforts. Volunteer participants (those who do not A sokn o

‘work on open source as part of their regular employment) contribute
almost 6 hours per week to open source work, whereas those who
are paid participants contribute a little more than 11 hours per week.

image17.png
Implications of the BCG Survey

The BCG survey provides an excellent overview of the open source
development world. Most open source developers are IT profession-
als who work on projects to improve their skills o for intellectual
stimulation. Far from the stereotype of inexperienced or unemploy-
able engineers, open source project developers have significant IT
experience. They are usually employed in technology jobs and are
unlikely to abandon a product and leave s users in the lurch. Open
source developers have a strong commitment to the product and
are reluctant to see its users harmed in any way. Consequently, the
risk associated with using a product created by volunteers is proba-
bly not as high as many potential open source users believe.

Far from the
stereotype of
unemployed
engineers, most
open source
developers have
ficant IT
experience and
are employed full-
time in technology
positions.

image18.png
Who Uses Open Source?

The short answer is “everyone.” If you've searched with Google,
purchased books from Amazon, or placed a call with MCIL, you've
used open source. Each of these organizations uses open source as
part of its core computing infrastructure.

Open source is
used by a number
of major
corporations.

image19.png
Many other
corporations

experimenting
with open source.

An open source
product’s user
group is usually
called its
community.

Commercial
software
developers are not
usually accessible
to the product
community.

‘The somewhat longer answer is that many organizations currently
use, are actively experimenting with, or are thinking about using
open source. To date, users of open source have mostly been early
adopters; pragmatic IT organizations are now beginning to consider
open source, mostly for the reasons outlined earlier. A detailed dis-
cussion of how these early adopters and pragmatic organizations use
IT is contained in Chapter 4, “The Open Source Maturity Model.”

‘The even longer answer is that open source is used by the product’s
user community. This might seem redundant, but the term commu-
nity (or user community) is one you will hear repeatedly in discus-
sions about open source. One of the key differences between
commercial software and open source is captured in this phrase. To
understand it, you need to consider the relationship between devel-
oper and user.

‘With commercial software, there s practically no interaction
between software developers and the people who actually use the
product. Most companies seek to shield their developers from users
10 enable them to focus full time on banging out the code needed
for the next release.

image20.png
Open source
developers are
usually highly
involved with

the product
community.

In contrast, on open source projects, there is a great deal of interac-
tion between developers and product users. In fact, one might say
that there is a very intense relationship among all ind;
involved with the product—whether developers or users. E-mails
fly back and forth among the development team and product users.
Feedback s sought and frecly given. Without romanticizing com-
munity, it critical to understand it and recognize how you can
interact with it and take advantage of it. It worth a discussion
about community to see how it impacts how you will use open
source. The place to begin community lies with the development
team and how they work. After that, we can explore how the user
community affects and is affected by open source.

uals

image21.png
elease carly and
often” results in
higher product
quality.

Source code
availability means
that bug fixes are
higher quality.

‘The reasons for this belief are straightforward. Developers create
and test code based on their assumptions about how it will be used.
However, actual users use (and misuse) the product in ways that no
developer could possibly have imagined. This use or misuse exer-
cises unexpected code paths and stresses the code in unforescen
ways. By making the product widely available, a large pool of users
quickly performs this product exercising and more quickly
improves the product’s quality.

Because the source code for the product is available, a second factor
comes into play. As the epigram “two heads are better than one”
illustrates, additional perspectives about problems lead to better
Solutions. As many of the people using (or misusing) the product
access the source code to create fixes that they then submit to the
core development team, the overall solution created as a blend of
the different fixes will be of higher quality than any one fix possibly
could be. Certainly the use of large ool of developers beyond the
central team enables a broader perspective to be brought to bear on
the source code. The benefit of having many people working on the
source code is summarized in the open source shibboleth “many
eyes make all bugs shallow.” A side benefit of having many people
looking at the source is that the code is reviewed for adherence to
coding standards; fragile or inflexible code can also be improved as a
result of these reviews. Generally speaking, code reviews are consid-
ered to be a very positive quality practice in software engineering.

image22.png
Direct user
feedback ensures
that the product

functionality.

A third factor that affects open source development practices is that
large numbers of real users work with the product and offer feed-
back directly to the development team. This feedback enables the
team to learn what features the product really needs to include to
be more useful. By contrast, commercial product companies often

image23.png
suffer from what is known as feature creep, focusing on delivering
‘more features in a race to outshine competitors rather than on
‘what product users really need. There is no pithy catchphrase to
‘express this open source practice, but the direct involvement of end
‘users is believed to lead to more useful products.

A Philosophy of Community

The practice of frequent releases to gather user feedback high-
lights one of the most important aspects of the open source world:
the community. The size and activity level of the community
carries significant implications for organizations considering a
product. Community pervades discussions of open source, and is
discussed throughout this book. More particularly, the size and
activity level of the community directly affects the maturity of the
product. This book extensively addresses all the ways that the user
community impacts the maturity of an open source product, and
how you or your organization can use the user community to
assess the product’s maturity.

What is an open source community? It is all the product develop-
ers, any users who are interested in participating, and any other
individuals who care to be involved with a product. Essentially, it is
a freewheeling organization of everyone who s interested in a par-
ticular product for whatever reason. There are no formal require-
‘ments for joining and no formal rules for participation.

One of the most
important aspects
of open source is
the community.

A product
communi
open to any
interested
participant.

image24.png
However, lack of formality does not mean that there are no stan- Easy participation

dards for participation or behavior. Very strong unwritten rules ;l‘:‘f.:'«";:n"::fmu
govern all community interactions. A community member is Standarde.

expected to interact respectfully, make reasoned arguments about
why a particular course of action s right, and, above all, to contrib-
ute to as well as take advantage of the community.

image25.jpeg

image26.jpeg

image27.jpeg
U freeSsD,

image28.jpeg
MyusQL

image29.jpeg

image30.jpeg

image31.jpeg
\§Y woroPress

image32.jpeg
1SC

image1.png
Bernard Golden

A RSEA R IO

R

